TFT-Bildschirm mit TV-Funktion

Philips T-line 221TE2LB/00 im Test

16.03.2012 von Bernd Weeser-Krell
Der TFT-Bildschirm Philips T-line 221TE2LB/00 lässt sich dank eingebautem TV-Tuner auch als Fernseher nutzen. Die Bildqualität liegt auf gutem Niveau.
Philips T-line 221TE2LB/00 im Test
Foto: Philips

Durch seine kompakten Maße eignet sich der 22-Zoll-Bildschirm gut als Zweitfernseher im Kinderzimmer oder im Büro. Dank der Hintergrundbeleuchtung mit weißen LEDs zeigte der Monitor eine sehr natürliche Farbwiedergabe. Dies merkte man besonders an Hauttönen, die das Modell sehr realistisch darstellte. Die Bildschärfe des LCD-Monitors war gut, die Helligkeit und der Kontrast lagen auf mittlerem Niveau. Hervorzuheben ist zudem die sehr homogene Ausleuchtung über den gesamten Bildschirm. Die gute Bildqualität bestätigte sich auch beim Einsatz als Fernseher. Im Gerät ist lediglich ein DVB-T-Tuner integriert, ein digitaler DVB-C-Empfänger, wie ihn einige Mitbewerber installiert haben, fehlt. Die integrierten Stereo-Lautsprecher lieferten einen passablen Sound.

ALLGEMEINE DATEN: Philips T-line 221TE2LB/00

Testkategorie

TFT mit TV-Funktion

T-TV-Hersteller

Philips

Preis (unverbindliche Preisempfehlung)

249 Euro

Paneltyp / Seitenverhältnis / Hintergrundbeleuchtung

TN / 16 : 9 / LED

TESTERGEBNIS (NOTEN): Philips T-line 221TE2LB/00

Testnote

gut (2,35)

Preis-Leistung

günstig

Bildschirmqualität (15 %)

2,84

Bildqualität (45 %)

2,12

Ausstattung (15 %)

3,28

Handhabung (10 %)

2,29

Stromverbrauch (10 %)

1,02

Service (5 %)

2,92

Aufwertung/Abwertung

- (0,00)

Die Geschichte der Monitore
Die Geschichte der Monitore
Sie würden das hier nicht lesen, wenn es keinen Monitor gäbe. Egal, ob LCD, CRT oder Lochstreifenpapier - seit dem Beginn der IT-Geschichte suchen wir eine Möglichkeit, die Ergebnisse digitaler Berechnungen visuell aufzubereiten. Die Art und Weise der Darstellung hat sich dabei enorm gewandelt...
Blinkende Lampen
So gut wie jeder frühe Großrechner stellte eine Art Ausdruck zur Verfügung, bevor die ersten digitalen Anzeigen aus blinkenden Lampen entstanden. Glühbirne an = Rechenoperation und Speicherzugriff wird vollzogen. Glühbirne aus = Operation beendet.<br /><br />(Bildquelle: Computer History Museum, Deutsches Museum)
Lochkarten
Der erste rein elektronische Universalrechner der US-Armee hieß ENIAC <a href="http://de.wikipedia.org/wiki/Eniac" target="_blank">(Electronic Numerical Integrator and Computer)</a> und nutzte Hollerith-Lochkarten sowohl für die Eingabe als auch für die Ausgabe. Um ein Programm zu starten, wurden die nötigen Operationen mit einer Schreibmaschinen-ähnlichen Vorrichtung in eine Pappkarte gestanzt und diese stapelweise in den Computer eingegeben. Der Rechner stanzte seinerseits die Ergebnisse der Berechnungen in neue Lochkarten und händigte sie an den Bedienenden aus, der die Ergebnisse mit Rechenmaschinen wie der IBM 405, die die Lochkarten in numerische Werte umwandelte, weiterverarbeiten konnte. (Auf dem kleinen Foto ist eine IBM 405 zu sehen.)<br /><br />(Bildquellen: Deutsches Museum, IBM, Benj Edwards)
Lochstreifenpapier
Als Alternative zum Lochkartensystem nutzten viele Rechner Lochstreifenpapier. Auf langen Rollen waren die Rechenbefehle einzelner Programme vermerkt. Wer die Maschine bediente, erhielt die Berechnungen in lesbarer Form (Nummern und Buchstaben) auf dem gleichen Weg auf langen Papierrollen zurück.<br /><br /> (Bildquelle: Ed Bilodeau, Creed & Company)
Anfänge der CRT-Technik
Die ersten Kathodenstrahlröhren (CRT) tauchten in Form von Speicher auf, nicht als Displays. Schnell bemerkte man, dass dieses CRT-Memory mit der gleichen Technik auch visualisiert werden konnte (wie auf den beiden Rechnern links im Bild zu sehen). Die auf Vektorendarstellungen basierenden Radar- und Oszilloskop-Technologien fanden hier ihren Anfang.<br /><br /> (Bildquellen: Computer History Museum, MITRE, DEC, Onno Zweers)
Fernschreiber als Displays
Bevor der Computer erfunden wurde, kommunizierten die Menschen seit dem Jahr 1902 mit Fernschreibern (Teleprintern) über das Telegrafennetz. Ein Fernschreiber ist eine elektrische Schreibmaschine, die per Kabel (und später per Radio) mit einem anderen Fernschreiber mit Hilfe eines speziellen Codes kommuniziert. In den Fünfziger Jahren schlossen Ingenieure die Fernschreiber direkt an Computer an und funktionierten sie zu Displays um, die ununterbrochen die Rechenoperationen mitschrieben. Bis Mitte der Siebziger war dies die kostengünstigste Methode, digitale Berechnungen zu visualisieren.<br /><br />(Bildquelle: Systems Engineering Laboratories)
Video-Displays
Irgendwann in den frühen Sechzigern stellten Computer-Ingenieure fest, dass sie Kathodenstrahlröhren (CRT) als virtuelles Papier in einem virtuellen Fernschreiber/Teleprinter nutzen konnten - diese Geräte hießen auch "Glas-Teleprinter" und später Video-Displays. Die Video-Displays waren schneller und flexibler als Papier und wurden wurden die wichtigste Anzeigetechnologie Anfang bis Mitte der Siebziger Jahre. Mittels eines Kabels wurden sie an den Rechner angeschlossen und empfingen den Code für die Darstellung von Text. Bis in die 1980er konnten sie keine grafischen Elemente darstellen und nur wenige unterstützten überhaupt die Wiedergabe von Farbe.<br /><br /> (Bildquelle: UNIVAC, Grant Stockly, DEC)
Composite Video Out
Teleprinter (selbst die papier-basierenden) kosteten 1974 ein Vermögen. An eine Nutzung im privaten Rahmen war nicht zu denken. Auf der Suche nach günstigen Alternativen, hatten drei Menschen (Don Lancaster, Lee Felsenstein und Steve Wozniak) zur gleichen Zeit die gleiche Idee. Wie wäre es mit einem Terminal-Gerät, das einen günstigen CCTV-Videobildschirm als Display verwendete? Schon kurze Zeit später bauten Wozniak und Felsenstein solche Video-Terminals in Computer ein (Apple I und Sol-20) - 1976 waren es die ersten Computer fabrikgefertigten Displays.<br /><br />(Bildquellen: Steven Stengel, Michael Holley)
Composite-Monitore
Einige der ersten Heim-PCs unterstützten Composite-Video-Monitore für ein besseres Bild. Unter anderem bot der Commodore 1702 eine einzigartige S-Video-Verbindung an. Als die PC-Revolution Fahrt aufnahm, begannen die Hersteller (Apple, Commodore, Radio Shack, TI) mit der Produktion eigener Videomonitore für die Heim-Computersysteme - sowohl in Monochrom- als auch in Farbvarianten. Der große Vorteil: Die meisten Modelle waren universell einsetzbar und funktionierten mit allen Rechnern.<br /><br />(Bildquellen: Radio Shack, Shane Doucette)
Das TV als Monitor daheim
Dank Videoanschluss konnte nun auch jeder gewöhnliche Fernseher als Computermonitor eingesetzt werden. Findige Geschäftsleute bauten einen "RF Modulator" für den Apple II, der Composite Video in ein simuliertes Broadcast-Signal umwandelte und dem TV so einen Sender vorgaukelte, den das Gerät ausstrahlen konnte. Der Atari 800 aus dem Jahr 1979 hatte den Modulator bereits fest integriert - viele andere Geräte folgten. Wegen der geringen Übertragungsgeschwindigkeiten blieb die Darstellung jedoch auf niedrige Auflösungen und den privaten Gebrauch beschränkt.<br /><br /> (Bildquelle: Apple)
Erste Plasma-Displays
Bereits in den Sechzigern kam eine alternative Monitor-Technologie auf, bei der Leuchtstoffe mittels durch Gasentladungen zwischen zwei Glasplatten erzeugte Plasma bewegt werden. Einer der ersten Computer mit Plasmabildschrim war der PLATO IV. Später experimentierten Unternehmen wie IBM und GRiD mit den dünnen und leichten Plasma-Displays in tragbaren Computern. Die Technologie hob im Computer-Umfeld jedoch nie ab. Im Bereich der Flachbild-TVs erlebte sie Jahrzehnte später hingegen ein Combeback.<br /><br />(Bildquellen: Simon Bisson, Corestore, Steven Stengel)
Die Anfänge von LCD
Auch die Flüssigkristalle erschienen bereits in den Sechzigern auf der Bildfläche. Sie feierten ihr Debüt in Taschenrechnern und Armbandhuhren. Die ersten tragbaren Computer in den 1980er Jahren perfektionierten die LCD-Technik, die für sehr sparsame, leichte und dünne Displays sorgt. Zunächst gab es sie nur mit Monochrom-Darstellung und niedrigem Kontrastverhalten - zusätzlich war noch ein separates Rücklicht nötig (Anzeigenhintergrundbeleuchtung/Backlight), damit auf ihnen - gerade im Dunkeln - überhaupt etwas zu erkennen war.<br /><br /> (Bildquellen: PC-Museum.com, Old-Computers.com, Steven Stengel)
Der IBM-PC kommt auf
Im Jahr 1981 erschien der IBM-PC mit einem eigenen Monochrome-Video-Display-Standard (MDA), der jedes bekannte Video-Display in den Schatten stellte. Für Farbdarstellungen brachte Big Blue den CGA-Adapter heraus, der an einen Composite-Video-Monitor oder den IBM-5153-Monitor (mit spezieller RGB-Verbindung) angeschlossen werden konnte. 1984 kam dann IMBs EGA-Standard auf den Markt, der eine höhere Auflösung und mehr Farben versprach. Der Kampf um den besten Monitor brach los - und IBM gewann erneut.<br /><br />(Bildquellen: IBM, Steven Stengel)
Macintosh-Monitore
Der erste Mac aus dem Jahr 1984 brachte einen 9-Zoll-Monochrom-Monitor mit, der die 512*342 Pixel großen Bitmap-Grafiken entweder schwarz oder weiß rendern konnte (grau ging nicht). Drei Jahre später kam der Macintosh II heraus, der sowohl Farbvideo als auch externe Monitore unterstützte. Der Mac-II-Video-Standard war vergleichbar mit dem VGA-Standard, der zu dieser Zeit auf den IBM-PCs Einzug hielt.<br /><br /> (Bildquelle: Apple)
RGB - eine neue Ära
Die Achtziger Jahre waren geprägt vom Markteintritt neuer Gerätehersteller, die Apple und IBM Paroli bieten wollten - inbesondere auch im Kampf um das beste Display für den heimischen Spielespaß an der Konsole. Die Atari-ST-Serie und die Commodore-Amiga-Serie brachten Monochrom- und RGB-Monitore hervor, die für höchsten Grafikgenuss standen.<br /><br />(Bildquellen: Bill Bertram, Steven Stengel)
Wichtige Neuerungen
In den Anfangstagen des IBM-PCs war für jede Art der Darstellung ein anderer Monitor nötig - sei es MDA, CGA oder EGA. NEC schaffte Abhilfe und entwickelte den ersten Multisync-Monitor, der eine ganze Reihe von Auflösungen unterstützte und im Livebetrieb umschalten konnte. Multisync wurde schnell zum industriellen Standard.<br />1987 führte IBM dann VGA ein und brachte zeitgleich zum PS/2 neue Monitore auf den Markt. Fast jeder analoge Video-Standard basiert seither auf VGA und seinem bekannten 15-Pin-Adapter.<br /><br />(Bildquellen: NEC, IBM)
Laptop-LCDs werden besser
Als LCD-Monitore erstmals aufkamen, waren sie zu schlecht aufgelöst und boten zu niedrige Bildwiederholungsraten. In den 1980er und 1990er Jahren wurde die Flüssigkristall-Technologie jedoch besser - ausgelöst durch den Notebook-Boom. Die Displays erreichten höhere Kontraste und eine deutlich verbesserte Farbdarstellung. Die früher noch separat notwendigen Backlights wurden standardmäßig eingebaut. Bald waren LCDs nicht mehr nur etwas für unterwegs, sondern auch für den Desktop.<br /><br />(Bildquellen: Altima, Texas Instruments)
Die beige Box
Mitte der Neunziger waren alle Röhrenmonitore beige. Kostengünstig in der Herstellung, Darstellung in Farbe, mit VGA-Standard und Multisync-fähig: das war massentauglich. Die Hersteller begannen, mit der Monitorgröße zu experimentieren - zwischen 14 und 21 Zoll war fast alles zu haben - ob nun in 4:3 oder Breitbild. Ende der Neunziger wurden dann einige der Röhrengeräte bereits flach.<br /><br />(Bildquellen: Radius, ViewSonic)
Desktop-LCDs
Desktop-LCDs kosteten noch viel und boten wenig, als einige Hersteller (ViewSonic, IBM, Apple) um das Jahr 1997 herum leistungsfähige Farb-LCD-Monitore zu moderaten Preisen auf den Markt brachten. Vorteile: Weniger Platzverbrauch auf dem Schreibtisch, weniger Energieverbrauch und wesentlich weniger Hitzeentwicklung als die Röhrengeräte.<br /><br />(Bildquellen: ViewSonic, IBM, Apple)
Und heute?
Heute sind LCD-Monitore (darunter viele Breitbildgeräte) Standard in der IT-Industrie. Da die LCD-Geräte im Preis dermaßen schnell gefallen sind, fällt es vielen Anwendern längst nicht mehr schwer, mit Doppel-Monitoren zu arbeiten. Neueste Errungenschaft der Branche: 3D-Varianten mit speziellem Glas und ultrahohen Bildwiederholungsraten.<br /><br /> (Bildquellen: Asus, Go.Video, Samsung)

Bildschirmqualität (15 %)

Bildgröße

22,0 Zoll (55,9 Zentimeter)

Auflösung / Pixeldichte

1920 x 1080 Bildpunkte / 102 dpi

maximale Bildwiederholrate

60 Bilder pro Sekunde

Pixelfehlerklasse / Strahlungsarmut (Norm)

II / nicht strahlungsarm nach TCO

Entspiegelung

hervorragend

Bildqualität (45 %)

Blickwinkelabhängigkeit: horizontal / vertikal

gering / gering

Bildschärfe (DVI oder HDMI)

überdurchschnittlich hoch

Farblinearität / Farbraum

sehr homogen / groß

Maximale Helligkeit

201 Candela/m²

Helligkeitsverteilung

93 Prozent

Kontrast

959:1

Reaktionszeit

11 Millisekunden

Ausstattung (15 %)

Anschlüsse / TV-Funktionen

1 x HDMI, 1 x VGA, 1 x Composite, 1 x S-Video, 1 x Komponenten, 3 x Audio-Buchsen analog, 1 x Audio-Buchsen digital, 1 x Kartenleser / DVB-T, CI-Slot

Extras / Fernbedienung

nicht höhenverstellbar, HDCP, Farbtemperaturvorwahl, Lautsprecher / ja

Handhabung (10 %)

Bedienbarkeit des Gerätemenüs

überdurchschnittlich einfach

Erreichbarkeit von Gerätetasten / Schnittstellen

sehr einfach / sehr einfach

Bedienbarkeit der TV-Funktionen

einfach

Sendersuchlauf: automatisch / Dauer

nein / 658 Sekunden

Kanalwechsel

4,0 Sekunden

Handbuch

recht ausführlich

Stromverbrauch (10 %)

Stromverbrauch: Betrieb / Standby / Aus

25,7 / 0,1 / 0,0 Watt

Service (5 %)

Garantiedauer / Vor-Ort-Service

24 / 0 Monate

Service-Hotline / deutschsprachig / Wochenenddienst / Erreichbarkeit / durchgängig / per E-Mail erreichbar

0800/1802089 / ja / ja / 13 Stunden / ja / ja

Internetseite / deutschsprachig / Handbuch verfügbar / Treiber verfügbar / Hilfsprogramme verfügbar

www.philips.de / ja / ja / ja / ja

Dieser Artikel basiert auf einem Beitrag der CW-Schwesterpublikation PC-Welt.