Network Neutrality and Protocol Discrimination

22.11.2010

Traffic Shaping

A common method for the bandwidth of network traffic is to apply "traffic shaping," which is a rate limiting technique that delays packet transmissions when the bandwidth exceeds a predetermined threshold. ISPs can assign differentiated threshold values depending on used application layer protocol and thereby effectively throttle the bandwidth for P2P traffic, or whatever traffic class they want to suppress. But first they need to perform traffic classification of the sessions in their networks to determine what protocols or applications that are being used. The most simple form of traffic classification uses the server-side TCP and UDP port numbers; HTTP for example typically uses TCP port 80 while DNS relies on UDP port 53. Port number classification is obviously easily dodged by P2P applications using port numbers that are user supplied or randomized. Several port independent methods for classifying traffic have therefore evolved, many use Deep Packet Inspection (DPI) to match payload data in the observed traffic to signatures of known protocols.

Enter Protocol Obfuscation

Modern P2P file sharing applications such as Vuze, uTorrent and eMule have introduced protocol obfuscation techniques to avoid being fingerprinted by the port independent traffic classification methods. The popular VoIP application Skype applies obfuscation to all of its traffic, which makes the application difficult to identify through network monitoring.

The concept of protocol obfuscation implies that measurable properties of the network traffic, such as deterministic packet sizes and byte sequences, are concealed/clouded so that they appear random. The obfuscation of payload data is typically achieved by employing encryption, and flow properties are obfuscated by adding random sized paddings to the payload. These obfuscation techniques do not always provide sufficient protection against traffic shaping. In the technical report titled "Breaking and Improving Protocol Obfuscation" Wolfgang John and I show how even P2P applications that employ protocol obfuscation are identifiable with statistical measurements. The obfuscated protocols used by BitTorrent and eDonkey P2P file sharing applications can for example be identified by measuring packet sizes and directions of the first packets in a TCP session.